Yap, EL & Greenberg, ME Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100330–348 (2018).
Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555457–462 (2018).
Kozareva, V. et al. A transcriptomic atlas of the mouse cerebellar cortex comprehensively defines cell types. Nature 598214–219 (2021).
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in mouse visual cortex. Nat. Neurosci. 21120-129 (2018).
Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 861369-1384 (2015).
Yang, Y. et al. Chromatin remodeling inactivates activity genes and regulates neuronal coding. Science 353300–305 (2016).
De Zeeuw, CI Bidirectional learning in the ascending and descending microareas of the cerebellum. Nat. Rev. Neurosci. 2292-110 (2021).
Zhou, H. et al. The cerebellar modules operate at different frequencies. eLife 3e02536 (2014).
Wadiche, JI & Jahr, CE Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat. Neurosci. 81329–1334 (2005).
Rodriques, SG et al. Slide-seq: an evolving technology for measuring genome-wide expression at high spatial resolution. Science 3631463-1467 (2019).
McConnell, MJ, Huang, YH, Datwani, A. & Shatz, CJ H2-Kb and H2-Db regulate long-term cerebellar depression and limit motor learning. proc. Natl Acad. Science. UNITED STATES 1066784–6789 (2009).
Yamada, T. et al. Sensory experience reshapes the architecture of the genome in the neural circuitry to drive motor learning. Nature 569708–713 (2019).
Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16649–657 (2019).
El-Shamayleh, Y., Kojima, Y., Soetedjo, R. & Horwitz, GD Selective optogenetic control of Purkinje cells in monkey cerebellum. Neuron 9551–62.e54 (2017).
Sarna, JR, Marzban, H., Watanabe, M. & Hawkes, R. Complementary bands of Cβ3 and Cβ4 phospholipase expression by subsets of Purkinje cells in mouse cerebellum. J. Comp. Neurol. 496303–313 (2006).
Langfelder, P. & Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics 9559 (2008).
Thomas, GM & Huganir, RL MAPK cascade signaling and synaptic plasticity. Nat. Rev. Neurosci. 5173–183 (2004).
Spencer, JA, Major, ML, and Misra, RP Basic fibroblast growth factor activates expression of the serum response factor gene through several distinct signaling mechanisms. Mol. Cell. Biol. 193977–3988 (1999).
Herrup, K. & Wilczynski, SL Cerebellar cell degeneration in leaner mutant mice. Neuroscience 72185–2196 (1982).
Sarna, JR et al. Patterned Purkinje cell degeneration in mouse models of Niemann–Pick type C disease. J. Comp. Neurol. 456279-291 (2003).
Ran, FA et al. In vivo genome editing using Staphylococcus aureus Case9. Nature 520186–191 (2015).
Zhu, S. et al. Genome-wide deletion screening of human long non-coding RNAs using a paired-guide CRISPR-Cas9 RNA library. Nat. Biotechnol. 341279-1286 (2016).
Sun, H. et al. Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain. Science. Adv. 6eaay6687 (2020).
Andermann, ML, Kerlin, AM, Roumis, DK, Glickfeld, LL & Reid, RC Functional specialization of mouse upper visual cortical areas. Neuron 721025-1039 (2011).
Sparta, DR et al. Construction of implantable fiber optics for long-term optogenetic manipulation of neural circuitry. Nat. Protocol 712-23 (2011).
Deverett, B., Kislin, M., Tank, DW & Wang, SS Cerebellar disruption impairs working memory during evidence accumulation. Nat. Commmon. ten3128 (2019).
Giovannucci, A. et al. CaImAn is an open source tool for the scalable analysis of calcium imaging data. eLife 8e38173 (2019).
Pnevmatikakis, EA & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 29183–94 (2017).
Spiegel, I. et al. Npas4 regulates the excitatory-inhibitory balance in neural circuitry through cell type-specific genetic programs. Cell 1571216-1229 (2014).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integration of single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36411–420 (2018).
Hafemeister, C. & Satija, R. Normalizing and stabilizing the variance of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20296 (2019).
Mi, H., Muruganujan, A., Casagrande, JT, and Thomas, PD Large-scale gene function analysis with the PANTHER classification system. Nat. Protocol 81551-1566 (2013).