Sequence-based modeling of the three-dimensional architecture of the genome from the kilobase to the chromosomal scale

0
  • Rao, SSP et al. A 3D map of the human genome at kilobase resolution reveals the principles of chromatin looping. Cell 1591665-1680 (2014).

    CAS Google Scholar Article

  • Dixon, JR et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485376–380 (2012).

    CAS Google Scholar Article

  • Nora, EP et al. Spatial partitioning of the X-inactivation center regulatory landscape. Nature 485381–385 (2012).

    CAS Google Scholar Article

  • van Steensel, B. & Furlong, EEM The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20327–337 (2019).

    PubMed PubMed Central Google Scholar

  • Kosak, ST et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296158-162 (2002).

    CAS Google Scholar Article

  • Dixon, JR et al. Reorganization of chromatin architecture during stem cell differentiation. Nature 518331–336 (2015).

    CAS Google Scholar Article

  • Amat, R. et al. Rapid and reversible changes in chromatin compartments and local organization revealed by hyperosmotic shock. Genome Res. 2918-28 (2019).

    CAS Google Scholar Article

  • Sima, J. et al. Identification of cis elements for spatio-temporal control of mammalian DNA replication. Cell 176816–830.e18 (2019).

    CAS Google Scholar Article

  • Alipour, E. & Marko, JF Self-organization of domain structures by DNA loop extrusion enzymes. Nucleic Acids Res. 4011202–11212 (2012).

    CAS Google Scholar Article

  • Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, LA Emerging evidence for chromosome folding by loop extrusion. Cold Spring Harb. Symp. As to. Biol. 8245–55 (2017).

    Google Scholar article

  • Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell representative 152038-2049 (2016).

    CAS Google Scholar Article

  • Sanborn, AL et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and modified genomes. proc. Natl Acad. Science. UNITED STATES 112E6456–E6465 (2015).

    CAS PubMed PubMed Central Google Scholar

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. Chromosomal conformation capture. Science 2951306–1311 (2002).

    CAS Google Scholar Article

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals principles of human genome folding. Science 326289-293 (2009).

    CAS Google Scholar Article

  • Krietenstein, N. et al. Ultrastructural details of mammalian chromosomal architecture. Mol. Cell 78554–565.e7 (2020).

    CAS Google Scholar Article

  • Zhou, J. & Troyanskaya, OG Predicting the effects of noncoding variants with a deep learning-based sequence model. Nat. Methods 12931–934 (2015).

    CAS Google Scholar Article

  • Alipanahi, B., Delong, A., Weirauch, MT & Frey, BJ Prediction of sequence specificities of DNA and RNA binding proteins by deep learning. Nat. Biotechnol. 33831–838 (2015).

    CAS Google Scholar Article

  • Kelley, DR, Snoek, J. & Rinn, JL Basset: Learning the accessible genome regulatory code with deep convolutional neural networks. Genome Res. https://doi.org/10.1101/gr.200535.115 (2016).

  • Zhou, J. et al. Ab initio prediction based on deep learning sequences of the effects of variants on disease expression and risk. Nat. Broom. https://doi.org/10.1038/s41588-018-0160-6 (2018).

  • Kelley, DR et al. Sequential prediction of regulatory activity across chromosomes with convolutional neural networks. Genome Res. 28739–750 (2018).

    CAS Google Scholar Article

  • Chen, KM, Cofer, EM, Zhou, J. & Troyanskaya, OG Selene: A PyTorch-Based Deep Learning Library for Sequence Data. Nat. Methods. https://doi.org/10.1038/s41592-019-0360-8 (2019).

  • Avsec, Ž. et al. Basic resolution patterns of transcription factor binding reveal flexible pattern syntax. Nat. Broom. 53354–366 (2021).

    CAS Google Scholar Article

  • Fudenberg, G., Kelley, DR & Pollard, KS Predicting 3D Genome Folding from DNA Sequence with Akita. Nat. Methods 171111-1117 (2020).

    Google Scholar article

  • Schwessinger, R. et al. DeepC: Predicting 3D genome folding using megabase-scale transfer learning. Nat. Methods 171118-1124 (2020).

    CAS Google Scholar Article

  • Durand, NC et al. Juicebox provides a Hi-C contact card viewing system with unlimited zoom. System cell 399-101 (2016).

    CAS Google Scholar Article

  • Abdennur, N. & Mirny, LA Cooler: Scalable Storage for Hi-C Data and Other Genomically Tagged Chips. Bioinformatics 36311-316 (2020).

    CAS Google Scholar Article

  • Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Broom. https://doi.org/10.1038/ng.3834 (2017).

  • Zhang, D. et al. Altered genome folding via contact domain boundary insertion. Nat. Broom. 521076-1087 (2020).

    Google Scholar article

  • Suzukawa, K. et al. Identification of a 3′ breakpoint cluster region of the ribophorin I gene at 3q21 associated with transcriptional activation of the EVI1 gene in acute myeloid leukemias with inv (3)(q21q26). Blood. 842681–2688 (1994).

    CAS Google Scholar Article

  • Gröschel, S. et al. A single rearrangement of the oncogenic enhancer causes concurrent dysregulation of EVI1 and GATA2 in leukemia. Cell 157369-381 (2014).

    Google Scholar article

  • Lupiáñez, DG et al. Disruptions of chromatin topological domains cause pathogenic rewiring of gene-enhancer interactions. Cell 1611012-1025 (2015).

    Google Scholar article

  • Franke, M. et al. The formation of new chromatin domains determines the pathogenicity of genomic duplications. Nature 538265-269 (2016).

    CAS Google Scholar Article

  • Croft, B. et al. Human sex reversal is caused by duplication or deletion of base enhancers upstream of SOX9. Nat. Commmon. 95319 (2018).

    CAS Google Scholar Article

  • Young, RA Checking the status of embryonic stem cells. Cell 144940–954 (2011).

    CAS Google Scholar Article

  • Vierbuchen, T. et al. The transcription factors AP-1 and the BAF complex are involved in signal-dependent enhancer selection. Mol. Cell 681067–1082.e12 (2017).

    CAS Google Scholar Article

  • Rao, SSP et al. Loss of cohesin eliminates all loop domains. Cell. https://doi.org/10.1016/j.cell.2017.09.026 (2017).

  • Belaghzal, H. et al. Hi-C liquid chromatin characterizes compartment-dependent chromatin interaction dynamics. Nat. Broom. https://doi.org/10.1038/s41588-021-00784-4 (2021).

  • Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with an A/T-rich sequence. Genome Res. 23270-280 (2013).

    CAS Google Scholar Article

  • Miga, KH et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 58579–84 (2020).

    CAS Google Scholar Article

  • Logsdon, GA, Vollger, MR & Eichler, EE Long-read human genome sequencing and its applications. Nat. Reverend Genet. 21597–614 (2020).

    CAS Google Scholar Article

  • Vierstra, J. et al. Reference global mapping of human transcription factor footprints. Nature 583729–736 (2020).

    CAS Google Scholar Article

  • Chen, KM, Wong, AK, Troyanskaya, OG, and Zhou, J. A sequence-based world map of regulatory activity to decipher human genetics. Preprint at bioRxiv. https://doi.org/10.1101/2021.07.29.454384 (2021).

  • Imakaev, M. et al. Iterative correction of Hi-C data reveals features of chromosome organization. Nat. Methods 9999-1003 (2012).

    CAS Google Scholar Article

  • Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, AG Weight averaging leads to wider optima and better generalization. Preprint at https://arxiv.org/abs/1803.05407 (2018).

  • Chen, T., Xu, B., Zhang, C. & Guestrin, C. Formation of deep networks with sublinear memory cost. Preprint at https://arxiv.org/abs/1604.06174 (2016).

  • Khan, A. et al. JASPAR 2018: Update of the open access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46D1284 (2018).

    Google Scholar article

  • Boix, CA, James, BT, Park, YP, Meuleman, W. & Kellis, M. Genomic circuits regulating human disease loci through integrative epigenomics. Nature 590300–307 (2021).

    CAS Google Scholar Article

  • Share.

    Comments are closed.