Prediction of disease variants with in-depth generative models of evolutionary data

0
  • 1.

    Van Hout, CV et al. Sequencing and characterization of the exome of 49,960 individuals in the British biobank. Nature 586, 749-756 (2020).

    ADS PubMed PubMed Central Article CAS Google Scholar

  • 2.

    Karczewski, KJ et al. The mutational stress spectrum quantified from variation in 141,456 humans. Nature 581, 434-443 (2020).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • 3.

    Landrum, MJ & Kattman, BL ClinVar at Five: Keeping the Promise. Hmm. Mutat. 39, 1623-1630 (2018).

    Article PubMed PubMed Central Google Scholar

  • 4.

    Raimondi, D. et al. DEOGEN2: Prediction and interactive visualization of the deleteriousness of a single amino acid in human proteins. Nucleic acids Res. 45, W201-W206 (2017).

    CAS PubMed PubMed Central Article Google Scholar

  • 5.

    Feng, BJ PERCH: A Unified Framework for Disease Gene Prioritization. Hmm. Mutat. 38, 243–251 (2017).

    CAS PubMed PubMed Central Article Google Scholar

  • 6.

    Ioannidis, NM et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. A m. J. Hum. Broom. 99, 877-885 (2016).

    CAS PubMed PubMed Central Article Google Scholar

  • 7.

    Ionita-Laza, I., McCallum, K., Xu, B. & Buxbaum, JD A spectral approach integrating functional genomic annotations for coding and non-coding variants. Nat. Broom. 48, 214-220 (2016).

    CAS PubMed PubMed Central Article Google Scholar

  • 8.

    Jagadeesh, KA et al. M-CAP eliminates a majority of variants of uncertain importance in high sensitivity clinical exomes. Nat. Broom. 48, 1581-1586 (2016).

    CAS PubMed Article PubMed Central Google Scholar

  • 9.

    Rentzsch, P., Witten, D., Cooper, GM, Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants in the human genome. Nucleic acids Res. 47, D886 – D894 (2019).

    CAS PubMed Article PubMed Central Google Scholar

  • ten.

    Adzhubei, IA et al. A method and server for predicting damaging missense mutations is provided. Nat. Methods 7, 248-249 (2010).

    CAS PubMed PubMed Central Article Google Scholar

  • 11.

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Broom. Med. 17, 405-424 (2015).

    PubMed PubMed Central Article Google Scholar

  • 12.

    Findlay, GM et al. Precise classification of BRCA1 variants with genome editing at saturation. Nature 562, 217-222 (2018).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • 13.

    Glazer, AM et al. High throughput reclassification of SCN5A variants. A m. J. Hum. Broom. 107, 111-123 (2020).

    CAS PubMed PubMed Central Article Google Scholar

  • 14.

    Giacomelli, AO et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Broom. 50, 1381-1387 (2018).

    CAS PubMed PubMed Central Article Google Scholar

  • 15.

    Mighell, TL, Evans-Dutson, S. & O’Roak, BJ A saturation mutagenesis approach to understand PTEN lipid phosphatase activity and genotype-phenotype relationships. A m. J. Hum. Broom. 102, 943-955 (2018).

    CAS PubMed PubMed Central Article Google Scholar

  • 16.

    Jia, X. et al. Massively parallel functional tests of missense variants of MSH2 conferring a risk for Lynch syndrome. A m. J. Hum. Broom. 108, 163-175 (2021).

    CAS PubMed Article PubMed Central Google Scholar

  • 17.

    Cao, Y. et al. ChinaMAP analysis of the deep sequences of the entire genome in 10,588 individuals. Res. 30, 717-731 (2020).

    PubMed PubMed Central Article Google Scholar

  • 18.

    Gudbjartsson, DF et al. Large-scale sequencing of the entire genome of the Icelandic population. Nat. Broom. 47, 435-444 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • 19.

    Esposito, D. et al. MaveDB: an open source platform for distributing and interpreting data from multiplexed variant effect trials. Genome Biol. 20, 223 (2019).

    PubMed PubMed Central Article Google Scholar

  • 20.

    Trenkmann, M. Putting genetic variants on a proficiency test. Nat. the Reverend Genet. 19, 667 (2018).

    CAS PubMed Article PubMed Central Google Scholar

  • 21.

    Rehm, HL et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • 22.

    Grimm, DG et al. The evaluation of the tools used to predict the impact of missense variants is hampered by two types of circularity. Hmm. Mutat. 36, 513-523 (2015).

    PubMed PubMed Central Article Google Scholar

  • 23.

    Hopf, TA et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnology. 35, 128-135 (2017).

    CAS PubMed PubMed Central Article Google Scholar

  • 24.

    Marks, DS et al. 3D structure of the protein calculated from the evolutionary sequence variation. PLoS A 6, e28766 (2011).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • 25.

    Hopf, TA et al. The coevolution of the sequences gives contacts and 3D structures of protein complexes. eLife 3, e03430 (2014).

    PubMed Google Scholar central article

  • 26.

    Lapedes, A., Giraud, B. & Jarzynski, C. Using sequence alignments to predict protein structure and stability with high accuracy. Preprint at https://arxiv.org/abs/1207.2484v1 (2012).

  • 27.

    Vaser, R., Adusumalli, S., Leng, SN, Sikic, M. & Ng, PC SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    CAS PubMed Article PubMed Central Google Scholar

  • 28.

    Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic acids Res. 39, e118 (2011).

    CAS PubMed PubMed Central Article Google Scholar

  • 29.

    Rezende, DJ, Mohamed, S. & Wierstra, D. in Proceedings of the 31st International Conference on Machine Learning flight. 32 (eds Xing, EP & Jebara, T.) 1278-1286 (PMLR, 2014).

  • 30.

    Kingma, DP & Welling, M. Bayes Automatically Encoded Variational. Preprint at https://arxiv.org/abs/1312.6114 (2013).

  • 31.

    Riesselman, AJ, Ingraham, JB & Marks, DS Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816-822 (2018).

    CAS PubMed PubMed Central Article Google Scholar

  • 32.

    Suzek, BE, Wang, Y., Huang, H., McGarvey, PB & Wu, CH Clusters UniRef: a complete and scalable alternative to improve sequence similarity searches. Bioinformatics 31, 926-932 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • 33.

    Kalia, SS et al. Recommendations for reporting secondary outcomes in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement from the American College of Medical Genetics and Genomics. Broom. Med. 19, 249-255 (2017).

    Article PubMed PubMed Central Google Scholar

  • 34.

    Frigo, G. et al. Homozygous SCN5A mutation in Brugada syndrome with monomorphic ventricular tachycardia and structural cardiac abnormalities. Europe 9, 391-397 (2007).

    Article PubMed PubMed Central Google Scholar

  • 35.

    Itoh, H. et al. Parental asymmetry in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction. EUR. J. Hum. Broom. 24, 1160-1166 (2016).

    CAS PubMed Article PubMed Central Google Scholar

  • 36.

    Glazer, AM et al. Deep mutational scan of an SCN5A voltage sensor. Circ. Genom. Precise. Med. 13, e002786 (2020).

    CAS PubMed PubMed Central Article Google Scholar

  • 37.

    Bouvet, D. et al. Functional test based on methylation tolerance to assess variants of unknown significance in the MLH1 and MSH2 genes and identify patients with Lynch syndrome. Gastroenterology 157, 421-431 (2019).

    CAS PubMed Article PubMed Central Google Scholar

  • 38.

    Pan, X. et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1. Science 362, eauau2486 (2018).

    Article PubMed CAS PubMed Central Google Scholar

  • 39.

    Fishel, R. et al. The homolog of the human mutator gene MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027-1038 (1993).

    CAS PubMed Article PubMed Central Google Scholar

  • 40.

    Peltomaki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol. 21, 1174-1179 (2003).

    CAS PubMed Article PubMed Central Google Scholar

  • 41.

    Warren, JJ et al. Structure of the DNA damage recognition complex of human MutSα. Mol. Cell 26, 579-592 (2007).

    CAS PubMed Article PubMed Central Google Scholar

  • 42.

    Brnich, SE et al. Recommendations for the application of the functional proof criterion PS3 / BS3 using the ACMG / AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019).

    PubMed PubMed Central Article Google Scholar

  • 43.

    Lewontin, RC The genetic basis of evolutionary change (Columbia Univ. Press, 1974).

  • 44.

    Kreitman, M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412-417 (1983).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • 45.

    Sunyaev, S. et al. Prediction of deleterious human alleles. Hmm. Mol. Broom. ten, 591-597 (2001).

    CAS PubMed Article PubMed Central Google Scholar

  • 46.

    IUCN. The IUCN Red List of Threatened Species. IUCN https://www.iucnredlist.org (2020).


  • Source link

    Share.

    Leave A Reply