Genetic dissection of nitrogen-induced changes in spinach shoot and root biomass

0
  • Eikhout, B., Bouwman, A. & Zeijts, V. The role of nitrogen in global food production and food sustainability. Agric. Ecosystem. About 1164–14 (2006).

    Google Scholar article

  • Liu, Z. et al. TaNBP1, a wheat guanine nucleotide-binding subunit gene, is critical in regulating adaptation to N starvation via modulation of N acquisition and ROS homeostasis. BMC Plant Biol. 181–14 (2018).

    Article on Google Scholar Ads

  • Kant, S., Bi, YM & Rothstein, SJ Understanding plant response to nitrogen limitation for improved crop nitrogen use efficiency. J. Exp. Bot. 62, 1499-1509. https://doi.org/10.1093/jxb/erq297 (2011).

    CAS PubMed Google Scholar Article

  • Stagnari, F., Di Bitetto, V. & Pisante, M. Effects of nitrogen fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 114225-233 (2007).

    CAS Google Scholar Article

  • Biemond, H., Vos, J. & Struik, P. Effects of nitrogen on dry matter and nitrogen accumulation and distribution of vegetables 3 Spinach. NJAS Wagening. J. Life Sci. 44227-239 (1996).

    Google Scholar

  • Marvi, MSP Effect of nitrogen and phosphorus levels on fertilizer use efficiency in lettuce and spinach. J. Hortic. For. 1140–147 (2009).

    Google Scholar

  • Schenk, M., Heins, B. & Steinrobe, B. The importance of spinach and kohlrabi root development for nitrogen fertilization. Vegetal soil 135197–203 (1991).

    CAS Google Scholar Article

  • Gu, J. et al. Roles of nitrogen and cytokinin signals in root-shoot communications in maximizing plant productivity and their agronomic applications. Factory Sci. 274320–331 (2018).

    CAS Google Scholar Article

  • Van der Linden, C. QTL mapping for nitrogen use efficiency (NUE) of spinach (Spinacia oleracea L) under different nitrogen levels in a hydroponic system (Wageningen University, 2014).

  • Chan-Navarrete, R., Dolstra, O., van Kaauwen, M., van Bueren, ETL, and van der Linden, CG Genetic map construction and QTL analysis of nitrogen use efficiency in spinach (Spinacia oleracea L.). Euphytic 208621–636 (2016).

    CAS Google Scholar Article

  • Awika, HO et al. Selection of nitrogen-sensitive root architectural traits in spinach using machine learning and genetic correlations. Sci. representing 119536. https://doi.org/10.1038/s41598-021-87870-z (2021).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Bhattarai, G. et al. High-resolution mapping and identification of candidate genes for late blight race 16 resistance in spinach. BMC Genomics 22478. https://doi.org/10.1186/s12864-021-07788-8 (2021).

    CAS PubMed Article PubMed Central Google Scholar

  • Bhattarai, G. et al. Genome-wide association studies in several spinach breeding populations refine resistance genes to race 13 of downy mildew. Front. Factory Sci. https://doi.org/10.3389/fpls.2020.563187 (2020).

    PubMed Article PubMed Central Google Scholar

  • Shi, A. et al. Genome-wide association study and genomic prediction of white rust resistance in USDA GRIN spinach germplasm. Hortic. Res. https://doi.org/10.1093/hr/uhac069 (2022).

    PubMed Article PubMed Central Google Scholar

  • Li, H. & Durbin, R. Fast and accurate short-read alignment with burrow wheel transformation. Bioinformatics 251754–1760 (2009).

    CAS Google Scholar Article

  • McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 201297-1303 (2010).

    CAS Google Scholar Article

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucl. Acids Res. 38e164–e164 (2010).

    Google Scholar article

  • Lipka, AE et al. GAPIT: integrated genome association and prediction tool. Bioinformatics 282397–2399 (2012).

    CAS Google Scholar Article

  • Wang, J., Zhang, Z. GAPIT version 3: Increasing power and accuracy for genomic association and prediction. bioRxiv, 2020.2011.2029.403170. https://doi.org/10.1101/2020.11.29.403170 (2020).

  • Bradbury, Pennsylvania et al. TASSEL: software for association mapping of complex traits in various samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).

    CAS PubMed Google Scholar Article

  • Huang, M., Liu, X., Zhou, Y., Summers, RM & Zhang, Z. BLINK: A package for the next level of genome-wide association studies with individuals and markers by million. gigascience https://doi.org/10.1093/gigascience/giy154 (2019).

    PubMed Article PubMed Central Google Scholar

  • Wang, J. & Zhang, Z. GAPIT version 3: Increasing power and accuracy for genomic association and prediction. Genomics Proteomics Bioinform. https://doi.org/10.1016/j.gpb.2021.08.005 (2021).

    Google Scholar article

  • Neeteson, JJ & Carton, O. The environmental impact of nitrogen in field vegetable production. Acta Hortic. 563, 21–28. https://doi.org/10.17660/ActaHortic.2001.563.1 (2001).

    Google Scholar article

  • Koh, E., Charoenprasert, S. & Mitchell, AE Effect of Organic and Conventional Culture Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Spinach Varieties (Spinacia oleracea L.). J. Agric. Food chemistry. 603144–3150 (2012).

    CAS Google Scholar Article

  • Joshi, V., Penalosa, A., Joshi, M. & Rodriguez, S. Regulation of oxalate metabolism in spinach revealed by RNA-seq-based transcriptomic analysis. Int. J.Mol. Sci. https://doi.org/10.3390/ijms22105294 (2021).

    PubMed Article PubMed Central Google Scholar

  • Zhang, Y., Lin, X., Zhang, Y., Zheng, SJ & Du, S. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach . J. Plant Nutr. 282011-2025 (2005).

    CAS Google Scholar Article

  • Zhang, Y. et al. Effects of nitrogen and calcium nutrition on the content, forms and distribution of oxalate in spinach. J. Plant Nutr. 322123–2139 (2009).

    Google Scholar article

  • Ota, K. & Kagawa, A. Effect of nitrogenous nutrients on oxalate content of spinach. J.Jpn. Soc. Hortic. Sci. 65327–332 (1996).

    ADS CAS Article Google Scholar

  • Heinrich, A., Smith, R. & Cahn, M. Nutrient and water utilization of fresh market spinach. HortTechnol. hortte 23, 325–333. https://doi.org/10.21273/horttech.23.3.325 (2013).

    Google Scholar article

  • Chan-Navarrete, R., Kawai, A., Dolstra, O., van Bueren, ETL, and van der Linden, CG Genetic diversity for nitrogen use efficiency in spinach (Spinacia oleracea L.) cultivars using the Ingestad model on hydroponics. Euphytic 199155-166 (2014).

    CAS Google Scholar Article

  • Sun, T.-P. The novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates various developmental processes in plants. Running. Notice. Structure. Biol. 68, 113–121. https://doi.org/10.1016/j.sbi.2020.12.013 (2021).

    CAS PubMed Article PubMed Central Google Scholar

  • Zentell, R. et al. Arabidopsis SPINDLY O-fucosyltransferase activates the nuclear growth repressor DELLA. Nat. Chem. Biol. 13, 479–485. https://doi.org/10.1038/nchembio.2320 (2017).

    CAS PubMed Article PubMed Central Google Scholar

  • Camout, L. et al. Nitrate signaling promotes plant growth by up-regulating gibberellin biosynthesis and DELLA protein destabilization. Running. Biol. 31, 4971-4982.e4974. https://doi.org/10.1016/j.cub.2021.09.024 (2021).

    CAS PubMed Google Scholar Article

  • Mutanwad, KV, Zangl, I. & Lucyshyn, D. Arabidopsis O-fucosyltransferase SPINDLY regulates root hair structure independently of gibberellin signaling. Development https://doi.org/10.1242/dev.192039 (2020).

    PubMed Article PubMed Central Google Scholar

  • Zhao, H., Li, X. & Ma, L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Factory signal behavior. seven1556-1560 (2012).

    CAS Google Scholar Article

  • Yi, K., Menand, B., Bell, E. & Dolan, L. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat. Broom. 42264-267 (2010).

    CAS Google Scholar Article

  • Brussels, A. et al. A gene regulatory network for root epidermal cell differentiation in Arabidopsis. PLoS Genet 8e1002446 (2012).

    CAS Google Scholar Article

  • Songs. et al. Subgroup IIId bHLH factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9, e1003653–e1003653. https://doi.org/10.1371/journal.pgen.1003653 (2013).

    CAS PubMed Article PubMed Central Google Scholar

  • Haswell, ES, Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, EM & Frachisse, J.-M. Two MscS homologs provide mechanosensitive channel activities in Arabidopsis root. Running. Biol. 18730–734 (2008).

    CAS Google Scholar Article

  • Peyronnet, R., Haswell, ES, Barbier-Brygoo, H. & Frachisse, J.-M. AtMSL9 and AtMSL10: Plasma membrane tension sensors in Arabidopsis roots. Factory signal behavior. 3726–729 (2008).

    Google Scholar article

  • Gholizadeh, A. & Kohnehrouz, BB Identification of Celosia cristata cDNA clone DUF538 expressed unstressed and stressed leaf sequences. Russian. J. Plant Physiol. 57247-252 (2010).

    CAS Google Scholar Article

  • Takahashi, S. et al. The photoconvertible water-soluble chlorophyll-binding protein of Chenopodium album is a member of DUF538, a superfamily that distributes in Embryophyta. J. Plant Physiol. 1701549-1552 (2013).

    CAS Google Scholar Article

  • Gholizadeh, A. Activity of plant protein superfamily DUF538 pectin methylesterase. Physiol. Mol. Biol. Plants 26, 829–839. https://doi.org/10.1007/s12298-020-00763-9 (2020).

    CAS Article PubMed PubMed Central Google Scholar

  • Johnstone, A., Mullen, R. & Mangroo, D. Arabidopsis At2g40730 encodes a cytoplasmic protein involved in nuclear tRNA export. Botanical 89, 175–190. https://doi.org/10.1139/B10-090 (2011).

    CAS Google Scholar Article

  • Share.

    Comments are closed.