Dormant phages communicate via arbitrium to control the exit of lysogeny


  • 1.

    Ptashne, M. Genetic switch: the Lambda phage revisited 3rd edition (Cold Spring Harbor Laboratory Press, 2004).

  • 2.

    Kourilsky, P. & Knapp, A. Lysogenization by bacteriophage lambda: III. Multiplicity dependent phenomena occurring in lambda infection. Biochemistry 56, 1517-1523 (1974).

    Google Scholar CAS Article

  • 3.

    Nanda, AM, Thormann, K. & Frunzke, J. Impact of spontaneous induction of prophages on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197, 410-419 (2015).

    Google Scholar article

  • 4.

    Węgrzyn, G. & Węgrzyn, A. Genetic switches during bacteriophage development. Program. Nucleic acid Res. Mol. Biol. 79, 1–48 (2005).

    Google Scholar article

  • 5.

    Erez, Z. et al. Communication between viruses guides lysis-lysogeny decisions. Nature 541, 488-493 (2017).

    Google Scholar CAS Article

  • 6.

    Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A. & Sorek, R. Widespread use of peptide communication in phages infecting soil and pathogenic bacteria. Microbe host cell 25, 746-755.e5 (2019).

    Google Scholar CAS Article

  • seven.

    Aframian, N. & Eldar, A. A bacterial tower of Babel: diversity of quorum-sensing signaling and its evolution. Annu. Rev. Microbiol. 74, 587-606 (2020).

    Google Scholar CAS Article

  • 8.

    Wang, Q. et al. Structural basis of the peptide arbitrium-AimR communication system in phage-lysogeny lysis decision. Nat. Microbiole. 3, 1266-1273 (2018).

    Google Scholar CAS Article

  • 9.

    Zhen, X. et al. Structural basis for the recognition of AimP signaling molecules by AimR in the Spbeta group of bacteriophages. Protein cell ten, 131-136 (2019).

    Google Scholar article

  • ten.

    Trinh, JT & Zeng, L. Structure regulates phage lysis and lysogeny decisions. Microbiol Trends. 27, 3-4 (2019).

    Google Scholar CAS Article

  • 11.

    Guan, Z. et al. Structural overview of DNA recognition by AimR of the arbitrium communication system in phage SPbeta. Cell Discov. 5, 29 (2019).

    Google Scholar article

  • 12.

    Abedon, ST Look Who’s Talking: Inhibition of T-phage Lysis, the Grandfather of Virus-Virus Intercellular Communication Research. Virus 11, 951 (2019).

    Google Scholar CAS Article

  • 13.

    Abedon, ST Comment: Communication between viruses guides lysis-lysogeny decisions. Front. Microbiole. 8, 983 (2017).

    Google Scholar article

  • 14.

    Hynes, AP & Moineau, S. Phagebook: the social network. Mol. Cell 65, 963-964 (2017).

    Google Scholar CAS Article

  • 15.

    Abedon, ST Secondary bacteriophage infection. Virol. Peach. 30, 3-10 (2015).

    Google Scholar CAS Article

  • 16.

    Nicolas, P. et al. The condition-dependent transcriptome reveals a high level regulatory architecture in Bacillus subtilis. Science 335, 1103-1106 (2012).

    Google Scholar CAS Article

  • 17.

    Au, N. et al. Genetic composition of Bacillus subtilis SOS system. J. Bacteriol. 187, 7655-7666 (2005).

    Google Scholar CAS Article

  • 18.

    Goranov, AI, Kuester-Schoeck, E., Wang, JD & Grossman, AD Characterization of overall transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J. Bacteriol. 188, 5595-5605 (2006).

    Google Scholar CAS Article

  • 19.

    Gandon, S. Why be tempered: lessons from the bacteriophage λ. Microbiol Trends. 24, 356-365 (2016).

    Google Scholar CAS Article

  • 20.

    Kawai, Y., Moriya, S. & Ogasawara, N. Identification of a protein, YneA, responsible for suppressing cell division during the SOS response in Bacillus subtilis. Mol. Microbiole. 47, 1113-1122 (2003).

    Google Scholar CAS Article

  • 21.

    Wood, HE, Dawson, MT, Devine, KM & McConnell, DJ Characterization of PBSX, a faulty prophage of Bacillus subtilis. J. Bacteriol. 172, 2667-2674 (1990).

    Google Scholar CAS Article

  • 22.

    Babel, H. et al. Ratiometric population detection by a pump-probe signaling system in Bacillus subtilis. Nat. Commmon. 11, 1176 (2020).

    Google Scholar CAS Article

  • 23.

    Czyż, A., Zielke, R. & Wegrzyn, G. The rapid degradation of the bacteriophage O protein by the ClpP / ClpX protease influences the decision to lysis versus lysogenization of the phage under certain conditions of growth of the host cells. Camber. Virol. 146, 1487-1498 (2001).

    Google Scholar article

  • 24.

    Abe, K. et al. The excision regulated by the development of the prophage SPβ reconstitutes a gene necessary for the maturation of the spore envelope in Bacillus subtilis. PLoS Genet. ten, e1004636 (2014).

    Google Scholar article

  • 25.

    Abe, K., Takamatsu, T. & Sato, T. Bacterial gene rearrangement mechanism: The precise DNA recombination catalyzed by SprA and its directionality control by SprB ensures gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic acids Res. 45, 6669-6683 (2017).

    Google Scholar CAS Article

  • 26.

    Sudiarta, IP, Fukushima, T. & Sekiguchi, J. Bacillus subtilis The SP-β prophage CwlP has two new domains of peptidoglycan hydrolase, muramidase and DD-endopeptidase digesting cross-linking. J. Biol. Chem. 285, 41232-41243 (2010).

    Google Scholar CAS Article

  • 27.

    Forrest, D., James, K., Yuzenkova, Y. & Zenkin, N. DNA-dependent monopeptide RNA polymerase homologous to multi-subunit RNA polymerase. Nat. Commmon. 8, 15774 (2017).

    Google Scholar CAS Article

  • 28.

    Bose, B., Auchtung, JM, Lee, CA & Grossman, AD A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol. Microbiole. 70, 570-582 (2008).

    Google Scholar CAS Article

  • 29.

    Sierro, N., Makita, Y., de Hoon, M. & Nakai, K. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing information on upstream intergenic conservation. Nucleic acids Res. 36, D93 – D96 (2008).

    Google Scholar CAS Article

  • 30.

    Doermann, AH Lysis and inhibition of lysis with Escherichia coli bacteriophage. J. Bacteriol. 55, 257-276 (1948).

    Google Scholar CAS Article

  • 31.

    Hay, SG & Seed, KD Dominant Vibrio cholerae the phage exhibits inhibition of lysis responsive to disruption by a defensive phage satellite. eLif 9, e53200 (2020).

    CAS Google Scholar

  • 32.

    Bruce, JB, Lion, S., Buckling, A., Westra, ER & Gandon, S. Regulation of induction and lysogenization of prophages by phage communication systems. Court. Biol. (2021).

  • 33.

    Brady, A. et al. The arbitrium system controls the induction of prophage. Court. Biol. (2021).

  • 34.

    Ladau, J. & Eloe-Fadrosh, EA Spatial, temporal and phylogenetic scales of microbial ecology. Microbiol Trends. 27, 662-669 (2019).

    Google Scholar CAS Article

  • 35.

    van Gestel, J. et al. Short-range quorum sensing monitors horizontal micron-scale gene transfer in bacterial communities. Nat. Commmon. 12, 2324 (2021).

    Google Scholar CAS Article

  • 36.

    Ben-Zion, I., Pollak, S. & Eldar, A. Clonality and non-linearity result in the diversity of facultative cooperation alleles. ISME J. 13, 824-835 (2019).

    Google Scholar article

  • 37.

    Harwood, CR & Cutting, SM (eds) Molecular Biology Methods for Bacillus (Wiley, 1990).

  • 38.

    McDonnell, GE, Wood, H., Devine, KM & McConnell, DJ Genetic control of bacterial suicide: Regulation of PBSX induction in Bacillus subtilis. J. Bacteriol. 176, 5820-5830 (1994).

    Google Scholar CAS Article

  • 39.

    Westers, H. et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20, 2076-2090 (2003).

    Google Scholar CAS Article

  • 40.

    Fink, PS & Zahler, SA Maps of restriction fragments of the genome of Bacillus subtilis bacteriophage SPβ. Uncomfortable 19, 235-238 (1982).

    Google Scholar CAS Article

  • 41.

    Koo, B.-M. et al. Construction and analysis of two genome-wide deletion libraries for Bacillus subtilis. Syst. cellular 4, 291-305.e7 (2017).

    Google Scholar CAS Article

  • 42.

    Yan, X., Yu, H.-J., Hong, Q. & Li, S.-P. Created /smoked salmon System-based genome engineering and PCR in Bacillus subtilis. Appl. About. Microbiole. 74, 5556-5562 (2008).

    Google Scholar CAS Article

  • 43.

    Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS A ten, e0128036 (2015).

    Google Scholar article

  • Share.

    Comments are closed.